
Symbolic Regression using Abstract Expression

Grammars
Michael F. Korns

Freeman Investment Management
1 Plum Hollow

Henderson, Nevada 89052
1 (702) 837 3498

mkorns@korns.com

ABSTRACT

Abstract Expression Grammars have the potential to integrate

Genetic Algorithms, Genetic Programming, Swarm Intelligence,

and Differential Evolution into a seamlessly unified array of tools

for use in symbolic regression. The features of abstract expression

grammars are explored, examples of implementations are

provided, and the beneficial effects of abstract expression

grammars are tested with several published nonlinear regression

problems.

Categories and Subject Descriptors

I.2.2 [Artificial Intelligence]: Automatic Programming - Program

Synthesis.

General Terms

terms: Algorithms

Keywords

keywords: Abstract Expression Grammars, Differential Evolution,

Genetic Programming, Particle Swarm, Symbolic Regression.

1. INTRODUCTION
Large scale general nonlinear regression is currently practiced

largely using genetic programming under the name Symbolic

Regression [4]. However, as a nonlinear regression algorithm,

genetic programming has a number of difficulties including

expression bloat and lack of fine grain control over the solution

produced. On the other hand, swarm intelligence [1] and

differential evolution [7] provide excellent fine grain control but

are not easily linked to general algebraic expression grammars.

Abstract expression grammars can be used to combine these

disparate machine learning techniques into a seamlessly unified

algorithm for general nonlinear regression. In fact abstract

expression grammars are currently being used inside a symbolic

regression system for large scale symbolic regression [2] [3].

2. Linear Regression Systems
A general linear regression system accepts an input matrix, X, of

N rows and M columns and a dependent variable vector, Y, of

length N. The dependent vector Y is related to X thru the

(hopefully but not necessarily linear) function, f, as follows: Y[n]

= f(X[n]). The output of a linear regression system will be a

coefficient vector, C, of length M, such that the inner product of C

with each row of X produces an estimate vector, EY, which

minimizes the least square error between EY and Y. General

linear regression systems can easily be constructed using Gaussian

methods.

For our purposes in the remainder of this paper, we will normalize

all least squared error measurements by dividing by the standard

deviation of Y. We will call this the Normalized Least Squared

Error (NLSE).

3. Nonlinear Regression Systems
A general nonlinear regression system accepts an input matrix, X,

of N rows and M columns and a dependent variable vector, Y, of

length N. The dependent vector Y is related to X thru the (quite

possibly nonlinear) function, f, as follows: Y[n] = f(X[n]). The

output of a nonlinear regression system will be a program object

(which we will hereinafter call an Estimator Agent), f, such that

invoking f on each row of X produces an estimate vector, EY,

which minimizes the normalized least square error between EY

and Y. General nonlinear regression systems can be constructed

using genetic programming methods[2] [3] [4] [6].

The capabilities of the agent, f, will be constrained by some sort

of algebraic expression grammar built into the nonlinear

regression system. More to the point, the computer codes

executed upon invoking f will be a compilation of some statement

in said grammar.

4. A Concrete Expression Grammar
A simple concrete expression grammar suitable for use in most

nonlinear regression systems would be a C-like grammar with the

following basic elements.

4.1 Real Numbers: 3.45, -.0982, and 100.389

4.2 Row Features: x1, x2, and x5.

4.3 Operators: +, *, /, %, <, <=, ==, !=, >=, >

4.4 Functions: sqrt(), log(), cube(), sin(), tan(), max(), etc.

4.5 Conditional: (expr1 < expr2) ? expr3 : expr4

A nonlinear regression system might create its final estimator

agent using mutation, cross over, or any number of techniques;

but, the final estimator agent might easily be a compilation of a

basic concrete expression such as:

4.6 f = (log(x3)/sin(x2*45.3))>x4 ? tan(x6) : cos(x3)

Computing an NLSE score for f requires only a single pass over

every row of X and results in an attribute being added to f by

executing the “score” method compiled into f as follows.

4.7 f.NLSE = f.score(X,Y).

5. Abstract Constants
Suppose that we are satisfied with the form of the expression in

(4.6); but, we are not sure that the real constant 45.3 is optimal.

The standard genetic programming algorithm does not provide a

mechanism for optimizing the real constant, 45.3, other than

running the symbolic regression system for more iterations; and,

then we are not guaranteed of receiving an improved answer in

the same form as in (4.6).

We can enhance our nonlinear regression system with the ability

to optimize individual real constants by adding abstract constant

rules to our built-in algebraic expression grammar.

5.1 Abstract Constants: c1, c2, and c10

Abstract constants represent placeholders for real numbers which

are to be optimized by the nonlinear regression system. To further

optimize f we would alter the expression in (4.6) as follows.

5.2 f = (log(x3)/sin(x2*c1))>x4 ? tan(x6) : cos(x3)

The compiler adds a new real number vector, C, attribute to f such

that f.C has as many elements as there are abstract constants in

(5.2). Optimizing this version of f requires that the built-in

“score” method compiled into f be changed from a single pass to a

multiple pass algorithm in which the real number values in the

abstract constant vector, f.C, are iterated until the expression in

(5.2) produces an optimized NLSE. This new score method has

the side effect that executing f.score(X,Y) also alters the abstract

constant vector, f.C, to optimal real number choices. Clearly the

particle swarm [1] and differential evolution [7] algorithms

provide excellent candidate algorithms for optimizing f.C and

they can easily be compiled into f.score by common compilation

techniques currently in the main stream.

Summarizing, we have a new grammar term, c1, which is a

reference to the 1st element of the real number vector, f.C (in C

language syntax c1 == f.C[1]). The f.C vector is optimized by

scoring f, then altering the values in f.C, then repeating the

process iteratively until an optimum NLSE is achieved.

Two important features of abstract expression grammars are worth

mention here. The overall genetic programming algorithms within

the nonlinear regression system do not have to be altered because

the swarm and differential learning enhancements are hidden

inside the “score” method by the abstract expression compiler

when appropriate. Furthermore a new population operator can be

defined which converts abstract expressions into their concrete

counterparts. For instance, the estimator agent in (5.2) is

optimized with:

5.3 f.C == < 45.396 >

Then the optimized estimator agent in (5.2) has a concrete

conversion counterpart as follows:

5.4 f = (log(x3)/sin(x2*45.396))>x4 ? tan(x6) : cos(x3)

Since abstract expressions are not grammatically excessively

different than concrete expressions, the genetic programming

logic in the nonlinear regression system will operate on either type

of expression. At different stages in the evolutionary process

population operators can be introduced which convert abstract

expressions into their optimized concrete counterparts, or even

new mutation operators which convert concrete expressions into

abstract expressions.

6. Abstract Features
Suppose that we are satisfied with the form of the expression in

(4.6); but, we are not sure that the features, x2, x3, and x6, are

optimal choices. The standard genetic programming algorithm

does not provide a mechanism for optimizing these features other

than running the symbolic regression system for more iterations;

and, then we are not guaranteed of receiving an improved answer

in the same form as in (4.6).

We can enhance our nonlinear regression system with the ability

to optimize individual features by adding abstract feature rules to

our built-in algebraic expression grammar.

6.1 Abstract Features: v1, v2, and v10

Abstract features represent placeholders for features which are to

be optimized by the nonlinear regression system. To further

optimize f we would alter the expression in (4.6) as follows.

6.2 f = (log(v1)/sin(v2*45.3))>v3 ? tan(v4) : cos(v1)

The compiler adds a new integer vector, V, attribute to f such that

f.V has as many elements as there are abstract features in (6.2).

Each integer element in the f.V vector is constrained between 1

and M, and represents a choice of feature (in x). Optimizing this

version of f requires that the built-in “score” method compiled

into f be changed from a single pass to a multiple pass algorithm

in which the integer values in the abstract feature vector, f.V, are

iterated until the expression in (6.2) produces an optimized NLSE.

This new score method has the side effect that executing

f.score(X,Y) also alters the abstract feature vector, f.V, to integer

choices selecting optimal features (in x). Clearly the genetic

algorithm [6], discrete particle swarm [1], and discrete differential

evolution [7] algorithms provide excellent candidate algorithms

for optimizing f.V and they can easily be compiled into f.score by

common compilation techniques currently in the main stream.

Summarizing, we have a new grammar term, v1, which is an

indirect feature reference thru to the 1st element of the integer

vector, f.V (in C language syntax v1 == x[f.V[1]]). The f.V

vector is optimized by scoring f, then altering the values in f.V,

then repeating the process iteratively until an optimum NLSE is

achieved.

For instance, the estimator agent in (6.2) is optimized with:

6.3 f.V == < 2, 4, 1, 6 >

Then the optimized estimator agent in (6.2) has a concrete

conversion counterpart as follows:

6.4 f = (log(x2)/sin(x4*45.396))>x1 ? tan(x6) : cos(x2)

7. Abstract Functions
Similarly, we can enhance our nonlinear regression system with

the ability to optimize individual features by adding abstract

functions rules to our built-in algebraic expression grammar.

7.1 Abstract Functions: f1, f2, and f10

Abstract functions represent placeholders for built-in functions

which are to be optimized by the nonlinear regression system. To

further optimize f we would alter the expression in (4.6) as

follows.

7.2 f = (f1(x3)/f2(x2*45.3))>x4 ? f3(x6) : f4(x3)

The compiler adds a new integer vector, F, attribute to f such that

f.F has as many elements as there are abstract features in (7.2).

Each integer element in the f.F vector is constrained between 1

and (number of built-in functions available in the expression

grammar), and represents a choice of built-in function.

Optimizing this version of f requires that the built-in “score”

method compiled into f be changed from a single pass to a

multiple pass algorithm in which the integer values in the abstract

function vector, f.F, are iterated until the expression in (7.2)

produces an optimized NLSE. This new score method has the side

effect that executing f.score(X,Y) also alters the abstract function

vector, f.F, to integer choices selecting optimal built-in functions.

Clearly the genetic algorithm [6], discrete particle swarm [1], and

discrete differential evolution [7] algorithms provide excellent

candidate algorithms for optimizing f.F and they can easily be

compiled into f.score by common compilation techniques

currently in the main stream.

Summarizing, we have a new grammar term, f1, which is an

indirect function reference thru to the 1st element of the integer

vector, f.F (in C language syntax f1 == funtionList[f.F[1]]). The

f.F vector is optimized by scoring f, then altering the values in f.F,

then repeating the process iteratively until an optimum NLSE is

achieved.

For instance, if the valid function list in the expression grammar is

7.3 < log, sin, cos, tan, max, min, avg, cube, sqrt >

And the estimator agent in (7.2) is optimized with:

7.4 f.F == < 1, 8, 2, 4 >

Then the optimized estimator agent in (7.2) has a concrete

conversion counterpart as follows:

7.5 f = (log(x3)/cube(x2*45.3))>x4 ? sin(x6) : tan(x3)

The built-in function argument arity issue is easily resolved by

having each built-in function ignore any excess arguments and

substitute defaults for any missing arguments.

8. Putting it all Together
We can put all these expression grammar rules together by adding

a final grammar rule as follows.

9.1 Phrase: p1, p2, and p3

The phrase placeholders represent unrestricted valid expressions,

such as would be ordinarily returned by a genetic programming

algorithm. Therefore, if we request the nonlinear regression

system to optimize, f = p1, we are requesting results similar to

those returned by genetic programming algorithms. The following

optimization requests provide a few examples of the range of

control we can exhibit over the nonlinear regression system via

the use of abstract expression grammars.

9.2 f = p1

9.3 f = (log(x3)/sin(x2*c1))>x4 ? tan(x6) : cos(x3)

9.4 f = (f1(v1)/f2(v2*c1))>v3 ? f3(v4) : f4(v5)

9.5 f = (p1 < p2 ? log(x2) : sin(x3)

Expression (9.2) requests a GP run. Expression (9.3) requests that

a specific abstract constant, c1, be optimized. Expression (9.4)

requests that a number of abstract constants, features, and

functions be optimized but in exactly the specified form.

Expression (9.5) requests that two general GP expressions be

evolved which optimally predict whether log(x2) or sin(x3) is the

correct regression model.

9. Testing these Concepts
In testing nonlinear regression using abstract expression

grammars we borrow the “hyper” test case published in [2].

10.1 hyper: y = 1.57 + (1.57*tanh(cube(x1)))

- (39.34*tanh(cube(x2)))

+ (2.13*tanh(cube(x3)))

+ (46.59*tanh(cube(x4)))

+ (11.54*tanh(cube(x5)))

Using the nonlinear regression system described in [2] [3], we

construct an X matrix 10,000 by 5, filled with random numbers

between -50 and +50, and run the “hyper” training model (10.1)

on each row of X to create the Y dependent vector. When we

request (quickly training for only 25 generations) the nonlinear

regression system to optimize, f = p1, the following results are

returned.

Table 10.2: Regression Results after 20 Generations

Training

Model

y = 1.57 + (1.57*tanh(cube(x1)))

- (39.34*tanh(cube(x2)))

+ (2.13*tanh(cube(x3)))

+ (46.59*tanh(cube(x4)))

+ (11.54*tanh(cube(x5)))

Hint f = p1

Resulting

Estimator
f = avg(-93.27*tanh(x4),-77.83*tanh(x2))

NLSE .19

Clearly the genetic programming algorithm has guessed some of

the features of the training model; but, many more generations of

training would be required for the GP algorithm to figure the

whole training model out. Even so the NLSE, of .19, is not too

bad.

However, when we request (quickly training for only 25

generations) the nonlinear regression system to optimize,

10.3 f = sum(c1, c2*tanh(cube(v1)),

c3*tanh(cube(v2)),

c4*tanh(cube(v3)),

c5*tanh(cube(v4)),

c6*tanh(cube(v5)))

the following results are returned.

Table 20.4: Regression Results after 20 Generations

Training

Model

y = 1.57 + (1.57*tanh(cube(x1)))

- (39.34*tanh(cube(x2)))

+ (2.13*tanh(cube(x3)))

+ (46.59*tanh(cube(x4)))

+ (11.54*tanh(cube(x5)))

Hint

f = sum(c1, c2*tanh(cube(v1)),

c3*tanh(cube(v2)),

c4*tanh(cube(v3)),

c5*tanh(cube(v4)),

c6*tanh(cube(v5))

Resulting

Estimator

f = sum(1.57, -39.34*tanh(cube(x2)),

2.13*tanh(cube(x3)),

1.57*tanh(cube(x1)),

 11.54*tanh(cube(x5)),

46.59*tanh(cube(x4)))

NLSE .00

Clearly the more specific hint has allowed the nonlinear

regression system to guess the features and constants of the

training model exactly. The NLSE, of .00, is perfect.

Even providing the nonlinear regression system with an

incomplete hint such as,

10.5 f = sum(c1, c2*tanh(cube(v1)),

C3*tanh(cube(v2)))

provides quick results that are somewhat superior to no hint at all.

Table 30.6: Regression Results after 20 Generations

Training

Model

y = 1.57 + (1.57*tanh(cube(x1)))

- (39.34*tanh(cube(x2)))

+ (2.13*tanh(cube(x3)))

+ (46.59*tanh(cube(x4)))

+ (11.54*tanh(cube(x5)))

Hint
f = sum(c1, c2*tanh(cube(v1)),

c3*tanh(cube(v2))

Resulting

Estimator

f = sum(1.31, -39.01*tanh(cube(x2)),

-46.65*tanh(cube(x4)))

NLSE .18

Even an incomplete hint produces a quick NLSE slightly better

than no hint at all, .18 versus .19.

10. The Future
While some of the concepts of abstract expression grammars have

been implemented in [2] [3], at this time there appear to be no

nonlinear regression systems in which all of these concepts are

used. There is little benefit from keeping such valuable, yet

disparate, algorithms as GA, GP, Particle Swarm, Differential

Evolution, Support Vectors, Neural Nets, and even Gaussian

Regression, separated, in isolation, and prevented from working

together smoothly. Abstract Expression Grammars have the

potential to integrate Genetic Algorithms, Genetic Programming,

Swarm Intelligence, Differential Evolution, Support Vector

Machines, Neural Nets, and even Gaussian Regression into a

seamlessly unified array of tools for use in nonlinear regression

systems.

Abstract expression grammar concepts will find their way into an

increasing number of evolutionary learning systems and especially

into nonlinear regression systems.

11. ACKNOWLEDGMENTS
Our thanks to Riccardo Poli for his thoughtful suggestions on new

population operators possible with abstract expression grammars.

12. REFERENCES
[1] Eberhardt, Russel, Shi, Yuhui, and Kennedy, James. 2001

Swarm Intelligence. Morgan Kaufmann, New York, USA.

http://www.amazon.com/Swarm-Intelligence-Morgan-

Kaufmann-

Artificial/dp/1558605959/ref=pd_bbs_sr_1?ie=UTF8&s=bo

oks&qid=1228938121&sr=8-1

[2] Korns, Michael F. 2007. Large-Scale, Time-Constrained

Symbolic Regression-Classification. In Riolo, Rick, L,

Soule, Terrance, and Wortzel, Bill, editors, Genetic

Programming Theory and Practive V, pages 53-68, New

York, New York, USA. Springer.

http://www.springer.com/computer/artificial/book/978-0-

387-76307-1

[3] Korns, Michael F., and Nunez, Loryfel, 2008. Profiling

Symbolic Regression-Classification. In Riolo, Rick, L,

Soule, Terrance, and Wortzel, Bill, editors, Genetic

Programming Theory and Practive VI, pages 215-228, New

York, New York, USA. Springer.

http://www.springer.com/computer/artificial/book/978-0-

387-87622-1

[4] Koza, John, R. 1992 Genetic Programming: On

Programming Computers by means of natural Selection. MIT

Press, Cambridge, USA.

http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid

=5888

[5] Man, Kim-Fung, Tang, Kit-Sang, and Kwong, Sam. 1999.

Genetic Algorithms. Springer, New York, USA.

http://www.springer.com/engineering/robotics/book/978-1-

85233-072-9

[6] O`Neil, Michael, and Ryan, Conor. 2003. Grammatical

Evolution: Evolutionary Automatic Programming in an

Arbitrary Language. Kluwer Academic Publishers, Dortrecht,

Netherlands.

http://www.alibris.com/booksearch?binding=&mtype=&key

word=Grammatical+Evolution&hs.x=6&hs.y=15

[7] Price, Kenneth, Storn, Rainer, and Lampinen, Jouni 2005.

Differential Evolution: A Practical Approach to Global

Optimization. Springer, New York, USA.

http://www.springer.com/computer/foundations/book/978-3-

540-20950-8

http://www.amazon.com/Swarm-Intelligence-Morgan-Kaufmann-Artificial/dp/1558605959/ref=pd_bbs_sr_1?ie=UTF8&s=books&qid=1228938121&sr=8-1
http://www.amazon.com/Swarm-Intelligence-Morgan-Kaufmann-Artificial/dp/1558605959/ref=pd_bbs_sr_1?ie=UTF8&s=books&qid=1228938121&sr=8-1
http://www.amazon.com/Swarm-Intelligence-Morgan-Kaufmann-Artificial/dp/1558605959/ref=pd_bbs_sr_1?ie=UTF8&s=books&qid=1228938121&sr=8-1
http://www.amazon.com/Swarm-Intelligence-Morgan-Kaufmann-Artificial/dp/1558605959/ref=pd_bbs_sr_1?ie=UTF8&s=books&qid=1228938121&sr=8-1
http://www.springer.com/computer/artificial/book/978-0-387-76307-1
http://www.springer.com/computer/artificial/book/978-0-387-76307-1
http://www.springer.com/computer/artificial/book/978-0-387-87622-1
http://www.springer.com/computer/artificial/book/978-0-387-87622-1
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=5888
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=5888
http://www.springer.com/engineering/robotics/book/978-1-85233-072-9
http://www.springer.com/engineering/robotics/book/978-1-85233-072-9
http://www.alibris.com/booksearch?binding=&mtype=&keyword=Grammatical+Evolution&hs.x=6&hs.y=15
http://www.alibris.com/booksearch?binding=&mtype=&keyword=Grammatical+Evolution&hs.x=6&hs.y=15

