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ABSTRACT 

Abstract Expression Grammars have the potential to integrate 

Genetic Algorithms, Genetic Programming, Swarm Intelligence, 

and Differential Evolution into a seamlessly unified array of tools 

for use in symbolic regression. The features of abstract expression 

grammars are explored, examples of implementations are 

provided, and the beneficial effects of abstract expression 

grammars are tested with several published nonlinear regression 

problems. 

Categories and Subject Descriptors 

I.2.2 [Artificial Intelligence]: Automatic Programming - Program 

Synthesis.  

General Terms 

terms: Algorithms 

Keywords 

keywords: Abstract Expression Grammars, Differential Evolution, 
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1. INTRODUCTION 
Large scale general nonlinear regression is currently practiced 

largely using genetic programming under the name Symbolic 

Regression [4]. However, as a nonlinear regression algorithm, 

genetic programming has a number of difficulties including 

expression bloat and lack of fine grain control over the solution 

produced. On the other hand, swarm intelligence [1] and 

differential evolution [7] provide excellent fine grain control but 

are not easily linked to general algebraic expression grammars.  

Abstract expression grammars can be used to combine these 

disparate machine learning techniques into a seamlessly unified 

algorithm for general nonlinear regression. In fact abstract 

expression grammars are currently being used inside a symbolic 

regression system for large scale symbolic regression [2] [3]. 

2. Linear Regression Systems 
A general linear regression system accepts an input matrix, X, of 

N rows and M columns and a dependent variable vector, Y, of 

length N. The dependent vector Y is related to X thru the 

(hopefully but not necessarily linear) function, f, as follows: Y[n] 

= f(X[n]). The output of a linear regression system will be a 

coefficient vector, C, of length M, such that the inner product of C 

with each row of X produces an estimate vector, EY, which 

minimizes the least square error between EY and Y. General 

linear regression systems can easily be constructed using Gaussian 

methods. 

For our purposes in the remainder of this paper, we will normalize 

all least squared error measurements by dividing by the standard 

deviation of Y. We will call this the Normalized Least Squared 

Error (NLSE). 

3. Nonlinear Regression Systems 
A general nonlinear regression system accepts an input matrix, X, 

of N rows and M columns and a dependent variable vector, Y, of 

length N. The dependent vector Y is related to X thru the (quite 

possibly nonlinear) function, f, as follows: Y[n] = f(X[n]). The 

output of a nonlinear regression system will be a program object 

(which we will hereinafter call an Estimator Agent), f, such that 

invoking f on each row of X produces an estimate vector, EY, 

which minimizes the normalized least square error between EY 

and Y. General nonlinear regression systems can be constructed 

using genetic programming methods[2] [3] [4] [6]. 

The capabilities of the agent, f, will be constrained by some sort 

of algebraic expression grammar built into the nonlinear 

regression system. More to the point, the computer codes 

executed upon invoking f will be a compilation of some statement 

in said grammar.  

4. A Concrete Expression Grammar 
A simple concrete expression grammar suitable for use in most 

nonlinear regression systems would be a C-like grammar with the 

following basic elements. 

4.1 Real Numbers: 3.45, -.0982, and 100.389 

4.2 Row Features: x1, x2, and x5. 

4.3 Operators: +, *, /, %, <, <=, ==, !=, >=, > 

4.4 Functions: sqrt(), log(), cube(), sin(), tan(), max(), etc. 

4.5 Conditional: (expr1 < expr2) ? expr3 : expr4 

A nonlinear regression system might create its final estimator 

agent using mutation, cross over, or any number of techniques; 

but, the final estimator agent might easily be a compilation of a 

basic concrete expression such as: 

4.6  f = (log(x3)/sin(x2*45.3))>x4 ? tan(x6) : cos(x3)  

Computing an NLSE score for f requires only a single pass over 

every row of X and results in an attribute being added to f by 

executing the “score” method compiled into f as follows.  

4.7 f.NLSE = f.score(X,Y). 



5. Abstract Constants 
Suppose that we are satisfied with the form of the expression in 

(4.6); but, we are not sure that the real constant 45.3 is optimal. 

The standard genetic programming algorithm does not provide a 

mechanism for optimizing the real constant, 45.3, other than 

running the symbolic regression system for more iterations; and, 

then we are not guaranteed of receiving an improved answer in 

the same form as in (4.6).  

We can enhance our nonlinear regression system with the ability 

to optimize individual real constants by adding abstract constant 

rules to our built-in algebraic expression grammar. 

5.1 Abstract Constants: c1, c2, and c10 

Abstract constants represent placeholders for real numbers which 

are to be optimized by the nonlinear regression system. To further 

optimize f we would alter the expression in (4.6) as follows. 

5.2 f = (log(x3)/sin(x2*c1))>x4 ? tan(x6) : cos(x3) 

The compiler adds a new real number vector, C, attribute to f such 

that f.C has as many elements as there are abstract constants in 

(5.2). Optimizing this version of f requires that the built-in 

“score” method compiled into f be changed from a single pass to a 

multiple pass algorithm in which the real number values in the 

abstract constant vector, f.C, are iterated until the expression in 

(5.2) produces an optimized NLSE. This new score method has 

the side effect that executing f.score(X,Y) also alters the abstract 

constant vector, f.C, to optimal real number choices. Clearly the 

particle swarm [1] and differential evolution [7] algorithms 

provide excellent candidate algorithms for optimizing f.C and 

they can easily be compiled into f.score by common compilation 

techniques currently in the main stream.  

Summarizing, we have a new grammar term, c1, which is a 

reference to the 1st element of the real number vector, f.C (in C 

language syntax c1 == f.C[1]). The f.C vector is optimized by 

scoring f, then altering the values in f.C, then repeating the 

process iteratively until an optimum NLSE is achieved. 

Two important features of abstract expression grammars are worth 

mention here. The overall genetic programming algorithms within 

the nonlinear regression system do not have to be altered because 

the swarm and differential learning enhancements are hidden 

inside the “score” method by the abstract expression compiler 

when appropriate. Furthermore a new population operator can be 

defined which converts abstract expressions into their concrete 

counterparts. For instance, the estimator agent in (5.2) is 

optimized with: 

5.3 f.C == < 45.396 > 

Then the optimized estimator agent in (5.2) has a concrete 

conversion counterpart as follows: 

5.4 f = (log(x3)/sin(x2*45.396))>x4 ? tan(x6) : cos(x3) 

Since abstract expressions are not grammatically excessively 

different than concrete expressions, the genetic programming 

logic in the nonlinear regression system will operate on either type 

of expression. At different stages in the evolutionary process 

population operators can be introduced which convert abstract 

expressions into their optimized concrete counterparts, or even 

new mutation operators which convert concrete expressions into 

abstract expressions. 

6. Abstract Features 
Suppose that we are satisfied with the form of the expression in 

(4.6); but, we are not sure that the features, x2, x3, and x6, are 

optimal choices. The standard genetic programming algorithm 

does not provide a mechanism for optimizing these features other 

than running the symbolic regression system for more iterations; 

and, then we are not guaranteed of receiving an improved answer 

in the same form as in (4.6). 

We can enhance our nonlinear regression system with the ability 

to optimize individual features by adding abstract feature rules to 

our built-in algebraic expression grammar. 

6.1 Abstract Features: v1, v2, and v10 

Abstract features represent placeholders for features which are to 

be optimized by the nonlinear regression system. To further 

optimize f we would alter the expression in (4.6) as follows. 

6.2 f = (log(v1)/sin(v2*45.3))>v3 ? tan(v4) : cos(v1) 

The compiler adds a new integer vector, V, attribute to f such that 

f.V has as many elements as there are abstract features in (6.2). 

Each integer element in the f.V vector is constrained between 1 

and M, and represents a choice of feature (in x). Optimizing this 

version of f requires that the built-in “score” method compiled 

into f be changed from a single pass to a multiple pass algorithm 

in which the integer values in the abstract feature vector, f.V, are 

iterated until the expression in (6.2) produces an optimized NLSE. 

This new score method has the side effect that executing 

f.score(X,Y) also alters the abstract feature vector, f.V, to integer 

choices selecting optimal features (in x). Clearly the genetic 

algorithm [6], discrete particle swarm [1], and discrete differential 

evolution [7] algorithms provide excellent candidate algorithms 

for optimizing f.V and they can easily be compiled into f.score by 

common compilation techniques currently in the main stream. 

Summarizing, we have a new grammar term, v1, which is an 

indirect feature reference thru to the 1st element of the integer 

vector, f.V (in C language syntax v1 == x[f.V[1]]). The f.V 

vector is optimized by scoring f, then altering the values in f.V, 

then repeating the process iteratively until an optimum NLSE is 

achieved. 

For instance, the estimator agent in (6.2) is optimized with: 

6.3 f.V == < 2, 4, 1, 6 > 

Then the optimized estimator agent in (6.2) has a concrete 

conversion counterpart as follows: 

6.4 f = (log(x2)/sin(x4*45.396))>x1 ? tan(x6) : cos(x2) 

7. Abstract Functions 
Similarly, we can enhance our nonlinear regression system with 

the ability to optimize individual features by adding abstract 

functions rules to our built-in algebraic expression grammar. 

7.1 Abstract Functions: f1, f2, and f10 

Abstract functions represent placeholders for built-in functions 

which are to be optimized by the nonlinear regression system. To 

further optimize f we would alter the expression in (4.6) as 

follows. 

7.2 f = (f1(x3)/f2(x2*45.3))>x4 ? f3(x6) : f4(x3) 

The compiler adds a new integer vector, F, attribute to f such that 

f.F has as many elements as there are abstract features in (7.2). 



Each integer element in the f.F vector is constrained between 1 

and (number of built-in functions available in the expression 

grammar), and represents a choice of built-in function. 

Optimizing this version of f requires that the built-in “score” 

method compiled into f be changed from a single pass to a 

multiple pass algorithm in which the integer values in the abstract 

function vector, f.F, are iterated until the expression in (7.2) 

produces an optimized NLSE. This new score method has the side 

effect that executing f.score(X,Y) also alters the abstract function 

vector, f.F, to integer choices selecting optimal built-in functions. 

Clearly the genetic algorithm [6], discrete particle swarm [1], and 

discrete differential evolution [7] algorithms provide excellent 

candidate algorithms for optimizing f.F and they can easily be 

compiled into f.score by common compilation techniques 

currently in the main stream. 

Summarizing, we have a new grammar term, f1, which is an 

indirect function reference thru to the 1st element of the integer 

vector, f.F (in C language syntax f1 == funtionList[f.F[1]]). The 

f.F vector is optimized by scoring f, then altering the values in f.F, 

then repeating the process iteratively until an optimum NLSE is 

achieved. 

For instance, if the valid function list in the expression grammar is 

7.3 < log, sin, cos, tan, max, min, avg, cube, sqrt > 

And the estimator agent in (7.2) is optimized with: 

7.4 f.F == < 1, 8, 2, 4 > 

Then the optimized estimator agent in (7.2) has a concrete 

conversion counterpart as follows: 

7.5 f = (log(x3)/cube(x2*45.3))>x4 ? sin(x6) : tan(x3) 

The built-in function argument arity issue is easily resolved by 

having each built-in function ignore any excess arguments and 

substitute defaults for any missing arguments. 

8. Putting it all Together 
We can put all these expression grammar rules together by adding 

a final grammar rule as follows. 

9.1 Phrase: p1, p2, and p3 

The phrase placeholders represent unrestricted valid expressions, 

such as would be ordinarily returned by a genetic programming 

algorithm. Therefore, if we request the nonlinear regression 

system to optimize, f = p1, we are requesting results similar to 

those returned by genetic programming algorithms. The following 

optimization requests provide a few examples of the range of 

control we can exhibit over the nonlinear regression system via 

the use of abstract expression grammars. 

9.2 f = p1 

9.3 f = (log(x3)/sin(x2*c1))>x4 ? tan(x6) : cos(x3) 

9.4 f = (f1(v1)/f2(v2*c1))>v3 ? f3(v4) : f4(v5) 

9.5 f = (p1 < p2 ? log(x2) : sin(x3) 

Expression (9.2) requests a GP run. Expression (9.3) requests that 

a specific abstract constant, c1, be optimized. Expression (9.4) 

requests that a number of abstract constants, features, and 

functions be optimized but in exactly the specified form. 

Expression (9.5) requests that two general GP expressions be 

evolved which optimally predict whether log(x2) or sin(x3) is the 

correct regression model. 

9. Testing these Concepts 
In testing nonlinear regression using abstract expression 

grammars we borrow the “hyper” test case published in [2]. 

10.1 hyper: y  = 1.57 + (1.57*tanh(cube(x1)))  

- (39.34*tanh(cube(x2))) 

+ (2.13*tanh(cube(x3))) 

+ (46.59*tanh(cube(x4))) 

+ (11.54*tanh(cube(x5))) 

Using the nonlinear regression system described in [2] [3], we 

construct an X matrix 10,000 by 5, filled with random numbers 

between -50 and +50, and run the “hyper” training model (10.1) 

on each row of X to create the Y dependent vector. When we 

request (quickly training for only 25 generations) the nonlinear 

regression system to optimize, f = p1, the following results are 

returned. 

Table 10.2: Regression Results after 20 Generations 

Training 

Model 

y  = 1.57 + (1.57*tanh(cube(x1)))  

- (39.34*tanh(cube(x2))) 

+ (2.13*tanh(cube(x3))) 

+ (46.59*tanh(cube(x4))) 

+ (11.54*tanh(cube(x5))) 

Hint f = p1  

Resulting 

Estimator 
f = avg(-93.27*tanh(x4),-77.83*tanh(x2)) 

NLSE .19 

 

Clearly the genetic programming algorithm has guessed some of 

the features of the training model; but, many more generations of 

training would be required for the GP algorithm to figure the 

whole training model out. Even so the NLSE, of .19, is not too 

bad. 

However, when we request (quickly training for only 25 

generations) the nonlinear regression system to optimize,  

10.3 f = sum(c1, c2*tanh(cube(v1)),  

c3*tanh(cube(v2)), 

c4*tanh(cube(v3)), 

c5*tanh(cube(v4)), 

c6*tanh(cube(v5))) 

the following results are returned. 

Table 20.4: Regression Results after 20 Generations 

Training 

Model 

y  = 1.57 + (1.57*tanh(cube(x1)))  

- (39.34*tanh(cube(x2))) 

+ (2.13*tanh(cube(x3))) 

+ (46.59*tanh(cube(x4))) 

+ (11.54*tanh(cube(x5))) 

Hint 

f = sum(c1, c2*tanh(cube(v1)),  

c3*tanh(cube(v2)), 

c4*tanh(cube(v3)), 



c5*tanh(cube(v4)), 

c6*tanh(cube(v5)) 

Resulting 

Estimator 

f = sum(1.57, -39.34*tanh(cube(x2)),  

2.13*tanh(cube(x3)), 

1.57*tanh(cube(x1)), 

      11.54*tanh(cube(x5)), 

46.59*tanh(cube(x4))) 

NLSE .00 

Clearly the more specific hint has allowed the nonlinear 

regression system to guess the features and constants of the 

training model exactly. The NLSE, of .00, is perfect. 

Even providing the nonlinear regression system with an 

incomplete hint such as,  

10.5 f = sum(c1, c2*tanh(cube(v1)),  

C3*tanh(cube(v2))) 

provides quick results that are somewhat superior to no hint at all. 

Table 30.6: Regression Results after 20 Generations 

Training 

Model 

y  = 1.57 + (1.57*tanh(cube(x1)))  

- (39.34*tanh(cube(x2))) 

+ (2.13*tanh(cube(x3))) 

+ (46.59*tanh(cube(x4))) 

+ (11.54*tanh(cube(x5))) 

Hint 
f = sum(c1, c2*tanh(cube(v1)),  

c3*tanh(cube(v2)) 

Resulting 

Estimator 

f = sum(1.31, -39.01*tanh(cube(x2)),  

-46.65*tanh(cube(x4))) 

NLSE .18 

 

Even an incomplete hint produces a quick NLSE slightly better 

than no hint at all, .18 versus .19.  

10. The Future 
While some of the concepts of abstract expression grammars have 

been implemented in [2] [3], at this time there appear to be no 

nonlinear regression systems in which all of these concepts are 

used. There is little benefit from keeping such valuable, yet 

disparate, algorithms as GA, GP, Particle Swarm, Differential 

Evolution, Support Vectors, Neural Nets, and even Gaussian 

Regression, separated, in isolation, and prevented from working 

together smoothly. Abstract Expression Grammars have the 

potential to integrate Genetic Algorithms, Genetic Programming, 

Swarm Intelligence, Differential Evolution, Support Vector 

Machines, Neural Nets, and even Gaussian Regression into a 

seamlessly unified array of tools for use in nonlinear regression 

systems.  

Abstract expression grammar concepts will find their way into an 

increasing number of evolutionary learning systems and especially 

into nonlinear regression systems.  
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